Noticias de openai

Jardines Vallados en AI: ChatGPT vs Claude vs Gemini

Los chatbots, ChatGPT o Gemini o Claude, son de la tecnologia que más rapido creció en la historia; literalmente cientos de miles de millones de dólares están siendo invertidos para que OpenAI, Anthropic o Google sean los ganadores de esta carrera y adquieran clientes lo más rápido posible; ¿la razón? una vez que empezás a usar un chatbot el lock-in para cambiar a otro es gigante y no lo vas a querer hacer.

Primer ¿Qué es lock-in? En el contexto de la tecnología, lock-in es la dependencia que se genera hacia un proveedor o producto, dificultando cambiar a una alternativa como el cambiar de iPhone a Android o de Windows a Mac. En el caso de los chatbots de IA –especialmente ChatGPT (OpenAI), Claude (Anthropic) y Gemini (Google)– existen mecanismos que fomentan esta fidelidad forzada y lo interesante es que podemos dividir en 3 contextos el lock-in en estos productos: (a) técnico, (b) producto y (c) el de uso.

Lock-in técnico (dependencia de la tecnología)

En el plano técnico, esto es más relevante para usuarios B2B (o sea, no finales) los tres modelos son cerrados y propietarios, lo que implica que dependes de la infraestructura y avances del proveedor:

  • ChatGPT (OpenAI): Funciona con modelos como GPT-4 que no son de código abierto, accesibles solo a través de la API o la interfaz de OpenAI. Si construís soluciones o flujos de trabajo basados en GPT-4, migrar a otro modelo requeriría re-desarrollar integraciones y puede implicar perder la calidad o afinación específica lograda. Por ejemplo, muchas empresas han incorporado la API de ChatGPT en sus productos; salir de ahí supone re-entrenar modelos alternativos o aceptar resultados diferentes. Además, OpenAI ofrece opciones de fine-tuning (ajuste fino) en algunos de sus modelos: una vez que entrenas GPT con datos propios, ese ajuste no es portátil a otros sistemas, incrementando la dependencia técnica.
  • Gemini (Google): Es la familia de modelos de lenguaje de Google (evolución de PaLM y de Bard). Al igual que ChatGPT, es un servicio cerrado en la nube de Google, sin opción de auto-hospedaje. El acceso suele ser mediante la app de Gemini (antes Bard) o APIs de Google. Esto crea lock-in porque cualquier solución construida sobre Gemini queda atada a Google Cloud y a sus condiciones. Además, como Google utiliza hardware optimizado (TPUs) y una integración profunda con su ecosistema, se dificulta replicar la solución fuera de su plataforma, así que quienes dependen de su capacidad (por ejemplo, en multi-modalidad o en comprensión de consultas complejas) se ven obligados a seguir usando los servicios de Google.
  • Claude (Anthropic): También es un modelo propietario ofrecido a través de API y aplicaciones asociadas (como la integración nativa en Slack o la plataforma web de Anthropic). Un ejemplo, Claude destacó por innovar en el tamaño de la ventana de contexto –pudiendo manejar hasta 100,000 tokens en Claude 2– lo que significa que puede leer documentos o conversaciones muy extensas. Si tu caso de uso aprovecha esa capacidad (por ejemplo, cargar informes largos para análisis), puedes quedar bloqueado en Claude porque otros bots (hasta hace poco) no manejaban tanto contexto. Nuevamente, al no ser open-source, no es posible llevar el modelo fuera de Anthropic. Así, a nivel técnico, los tres chatbots generan un lock-in similar: utilizan modelos de IA exclusivos y nativos de cada proveedor, obligando a permanecer en sus plataformas para mantener el mismo rendimiento.

Lock-in de producto (ecosistema y funcionalidades)

Cada servicio de chatbot construye funciones y ecosistemas en torno al modelo base, lo que refuerza la lealtad del usuario al producto:

  • ChatGPT: OpenAI ha convertido ChatGPT en una plataforma con características únicas. Por ejemplo, introdujo un ecosistema de plugins donde el chatbot puede conectarse con servicios de terceros (buscador de vuelos, bases de conocimiento, herramientas como Wolfram Alpha, etc.), ampliando enormemente lo que puede hacer. Estos complementos resuelven tareas dentro de ChatGPT, evitando que el usuario salga a otras apps. Asimismo, OpenAI agregó capacidades multimodales: ChatGPT puede analizar imágenes y voz, integrando funcionalidades que antes requerían herramientas separadas. También funciones como Code Interpreter (ahora llamado “Advanced Data Analysis”) permiten ejecutar código y procesar archivos dentro de la misma interfaz de chat. Todas estas facilidades hacen que el usuario encuentre en ChatGPT un “todo en uno”, dificultando reemplazarlo con otro bot que no tenga un repertorio de plugins o características equivalente.
  • Gemini (Google): La estrategia de Google para Gemini (y Bard) es apoyarse en su amplio ecosistema de servicios. Gemini está integrándose con las aplicaciones de Google que millones de personas usan a diario. Por ejemplo, con las Extensiones de Bard/Gemini, el asistente puede extraer información de Gmail, Google Drive, Maps, YouTube y otras apps directamente dentro de la conversación . Esto significa que un usuario de Gmail o Docs puede pedirle a Gemini que encuentre un correo específico, resuma un documento de Drive o planifique un viaje con datos de Maps, todo sin salir del chat. Este nivel de integración es un poderoso lock-in de producto: si tu vida digital está en Google (correo, fotos, documentos, calendario), es muy tentador usar el chatbot nativo que “habla” con esas apps. Gemini con personalización incluso usa tu historial de búsquedas de Google para dar respuestas adaptadas a tus intereses , y Google planea conectarlo también con Fotos y YouTube . En conjunto, Gemini se vuelve una pieza central del ecosistema Google –un asistente personal omnipresente– del que es difícil salir sin perder comodidades.
  • Claude: Anthropic, aunque más nuevo en el plano de producto de consumo, ha buscado nichos específicos para Claude. Un factor importante es la integración empresarial: por ejemplo, Slack incorporó a Claude como parte de sus herramientas (Slack GPT), lo que atrae a equipos de trabajo a usar Claude dentro de su flujo laboral. Si tu empresa comienza a usar Claude en Slack para asistencia en canal, quedas ligado a ese entorno. En cuanto a funcionalidades diferenciadoras, Claude ofrece estilos personalizables (Anthropic introdujo Claude Styles a fines de 2024 para ajustar la personalidad o tono del bot) . Sin embargo, en general Anthropic ha mantenido una interfaz más sencilla. No tiene, por ahora, un sistema de plugins tan amplio ni capacidades multimediales visibles al usuario común. Su ventaja de producto recae más en la experiencia de conversación (se percibe amistoso y bueno en tareas creativas) y en límites más amplios (contexto extenso, respuestas más largas), lo cual fideliza a usuarios que necesitan esas cualidades. Aun con menos “campanas y silbatos” que ChatGPT o Google, Claude genera lock-in si has adaptado tu flujo de trabajo a sus puntos fuertes (ej. cargar grandes documentos, uso en herramientas como Notion o Slack mediante API).

Lock-in de uso (memoria, personalización y datos del usuario)

Captura: Ajustes de memoria en ChatGPT. La IA va recordando detalles proporcionados por el usuario para personalizar futuras respuestas (por ejemplo, preferencias de formato, datos personales mencionados, etc.). Este perfil almacenado hace que mientras más uses ChatGPT, más se adapte a ti, fortaleciendo el lock-in .

El lock-in más sutil –y quizás más poderoso– surge del historial de uso y la personalización. A medida que interactúas con el chatbot, este puede aprender sobre tus preferencias, contexto y necesidades, creando un perfil que enriquece las siguientes respuestas. Cada servicio ha implementado esta idea de memoria de manera diferente:

  • ChatGPT: OpenAI introdujo la memoria activa entre conversaciones en 2024. Ahora ChatGPT puede referenciar todas tus conversaciones pasadas para darte respuestas más relevantes y personalizadas . Por ejemplo, recuerda que tienes una hija pequeña o que te gusta cierto estilo de resumen si se lo has mencionado, y aplicará ese contexto automáticamente en nuevas sesiones. Además, las instrucciones personalizadas permiten fijar datos o indicaciones persistentes sobre ti (rol, tono deseado, información clave) sin tener que repetirlas en cada chat. En conjunto, “mientras más usas ChatGPT, más útil se vuelve” porque cada nueva conversación se construye sobre lo que ya sabe de ti . Esto crea un fuerte lock-in de uso: después de semanas o meses, ChatGPT “te conoce” y cambiar a otro chatbot implicaría perder esa familiaridad. Hay que destacar que esta memoria es persistente y unificada: no distingue entre diferentes contextos o proyectos, lo que puede llevar a que detalles de un ámbito aparezcan en otro si no se tiene cuidado  . Aun así, desde el punto de vista de la fidelización, este perfil global anima a usar siempre la misma IA para no empezar desde cero en cada nueva plataforma.
  • Gemini (Google): Google, tras un periodo más conservador, ha incorporado recientemente funciones de memoria y contexto personal en Gemini. En 2024 permitía que el usuario le pida “recuerda que me interesa X”, pero desde agosto de 2025 ya recuerda detalles previos automáticamente si activas esa opción . Con la función Personal Context (Contexto personal) encendida, Gemini “aprende de tus conversaciones pasadas para brindar respuestas relevantes y a tu medida”  . Un ejemplo dado por Google: si antes hablaste con Gemini sobre ideas para un canal de YouTube de cultura japonesa, más adelante, al pedir nuevas ideas, te sugerirá algo relacionado (como comida japonesa) sin que tengas que recordárselo  . Asimismo, Gemini aprovecha datos de tu cuenta Google (p. ej. historial de búsquedas) para afinar respuestas a tus intereses . En esencia, Google busca construir un asistente personal inteligente completamente integrado a tu vida digital: “nuestra visión es un asistente de IA que aprende y te entiende verdaderamente”, dijo un director del proyecto . Esto evidentemente aumenta la dependencia: un usuario que habilita estos recuerdos en Gemini verá cómo el asistente cada vez le ahorra más contexto y le entrega respuestas a la carta, volviéndose difícil renunciar a esa comodidad. (Vale mencionar que Google activa esta personalización por defecto en ciertos países, aunque permite desactivarla ). En resumen, tu actividad previa en Google se convierte en valor añadido exclusivo de Gemini, cerrando la puerta a competidores que no pueden acceder a esos datos.

Captura: Búsqueda de conversaciones pasadas en Claude 2. El usuario pregunta “¿en qué estábamos trabajando antes de mis vacaciones?” y Claude localiza y resume el chat relevante. A diferencia de ChatGPT, Claude no mezcla contextos automáticamente: solo recupera aquello que se le solicita , evitando construir un perfil unificado del usuario.

  • Claude (Anthropic): La aproximación de Anthropic ha sido más enfocada en el control del usuario que en la proactividad. Durante mucho tiempo, Claude no guardaba memoria persistente entre chats –cada conversación era aislada–. En agosto de 2025 lanzaron una función de “Conversa y busca” que permite al usuario consultar conversaciones previas cuando lo necesite . Por ejemplo, puedes indicarle a Claude: “revisa lo que discutimos la semana pasada sobre el Proyecto X” y el sistema buscará en tus chats archivados para traer los detalles relevantes . Importante: “Claude solo recupera y referencia tus chats pasados cuando se lo pides, y no está construyendo un perfil de usuario según aclaró Anthropic . Es decir, no hay memoria automática cruzada; tú decides cuándo y qué recordar. Esto tiene dos caras para el lock-in: por un lado, ofrece menos personalización espontánea que ChatGPT o Gemini, lo que podría significar un vínculo menos fuerte (el usuario no siente que Claude “lo conoce” de manera profunda). Pero, por otro lado, algunos usuarios profesionales pueden preferir esta compartimentación. Claude introdujo el concepto de “memoria por proyecto”, donde los recuerdos no se mezclan entre distintos temas o clientes  . Esto evita filtraciones de información de un contexto a otro y da más confianza para usar la herramienta en entornos sensibles. Si tu prioridad es ese control, podrías volverte leal a Claude precisamente porque no te arriesga con memorias fuera de lugar. En síntesis, el lock-in de uso en Claude es más débil en términos de perfil personal global, pero Anthropic apuesta a fidelizar mediante la transparencia y seguridad: tú mandas sobre qué se recuerda y cuándo, y no tienes sorpresas de la IA sacando datos antiguos sin pedirlo . Aun con enfoques distintos, todos los proveedores reconocen que la memoria es clave para enganchar a los usuarios: “las funciones de memoria buscan atraer y mantener usuarios en un servicio, aumentando la ‘pegajosidad’” .

Antes era "interoperabilidad" ahora ¿podés llevarte tu contexto de un chatbot a otro?

La realidad actual es que no existe portabilidad fácil de un contexto personalizado entre distintas plataformas. Cada proveedor guarda tus datos de manera propietaria y no ofrece, por ejemplo, una exportación de “lo que la IA ha aprendido de mí” en formato estándar. Si quisieras cambiar de bot, prácticamente tendrías que empezar de cero o manualmente resumir y reenviar la información relevante.

Por ejemplo, ChatGPT permite ver y editar lo que recuerda de ti en sus ajustes de memoria, e incluso exportar tus conversaciones en un archivo, pero otro chatbot no sabría interpretar directamente esos datos para replicar el mismo entendimiento. De forma similar, Gemini podría estar usando tu historial de búsquedas y otros datos de Google –los cuales no puedes simplemente transferir a un rival, por privacidad y formato–. Claude, al no compilar un perfil único, te lo pone un poco más fácil en el sentido de que lo que necesita saber, tú se lo das explícitamente (y podrías dárselo igualmente a otro bot). Aún así, no hay una API universal ni estándar de “memoria de usuario” que permita llevar tu contexto personal de ChatGPT a Gemini o viceversa. Esta falta de portabilidad es deliberada hasta cierto punto: como vimos, la memoria y personalización son ventajas competitivas y mecanismo de lock-in. Cada empresa quiere que los beneficios de “conocerte bien” se queden dentro de su producto.

¿Y Meta AI?

Aunque Meta también lanzó su propio chatbot, no lo incluimos en este análisis por dos motivos principales:

  1. Nivel de adopción: hoy Meta AI está principalmente integrado en productos como Facebook, Instagram o WhatsApp, pero su alcance como asistente independiente es todavía limitado comparado con ChatGPT, Gemini o Claude.
  2. Estrategia distinta: Meta apuesta a modelos abiertos como Llama para impulsar su IA. Su jugada es más bien construir un ecosistema de desarrolladores y empresas que adopten su tecnología, en lugar de generar lock-in sobre un único asistente centralizado con memoria y personalización.

En otras palabras, la competencia de Meta es más horizontal (distribución de modelos abiertos) que vertical (chatbot con lock-in directo), y por eso este post se centra en quienes hoy disputan el lock-in de los usuarios finales.

Los chatbots de IA más avanzados están desplegando una combinación de estrategias para mantenernos enganchados en sus plataformas. En lo técnico, nos atan con modelos potentes pero propietarios y difíciles de reemplazar. A nivel de producto, nos seducen con integraciones y funciones exclusivas (ya sean plugins, acceso al ecosistema Google, o contextos gigantes para manejar nuestros datos). Y mediante el uso continuado, construyen una relación cada vez más personalizada –ya sea mediante un perfil unificado como ChatGPT/Gemini, o con memorias controladas por el usuario como Claude– que hace que cambiar de chatbot se sienta como retroceder.

Como usuarios o creadores de contenido, es importante ser conscientes de estos lock-ins. Disfrutar de la conveniencia de que “mi chatbot ya sabe lo que quiero” es genial, pero implica confiar nuestros datos y preferencias a un silo específico. Por ahora, mover nuestro “yo digital” de una IA a otra no es sencillo, así que elegir con cuál casarse no es trivial. La competencia entre OpenAI, Anthropic y Google está llevando a rápidos avances –todos han acelerado en incorporar memoria y personalización – lo que beneficia al usuario en funcionalidad. Pero también refuerza que cada uno quiera ser “el asistente del que no te puedes desprender”.

En última instancia, un posible camino para aliviar el lock-in sería que aparezcan estándares abiertos o asistentes locales que permitieran portar nuestras instrucciones y datos de contexto de forma privada. Sin embargo, hoy por hoy, si inviertes tiempo en un chatbot, tiendes a quedarte con él por inercia y beneficio acumulado.

Este es un mercado donde habrán pocos ganadores y por eso cada uno quemando decenas de miles de millones de inversores; porque una vez elegido es muy dificil que lo dejes; la elección racional seria: "elegir aquel que se alinee con tus valores (privacidad, control) y necesidades, sabiendo que cambiar de barco más adelante tendrá sus costos" pero ¿como lo podrías saber si ni siquiera creo que lo sepan ellos mismos?

| Inteligencia Artifical
Tags:
Anthropic Google IA innovación inversiones openai privacidad

La OpenAI Mafia ahora también juega como VC

En mi post sobre la OpenAI Mafia hablé de cómo ex-empleados de OpenAI están creando startups alrededor de los nichos que saben serán clave en la nueva economía de la inteligencia artificial. Ahora están dando un paso más: crear fondos de inversión en early stage startups.

¿Por qué? Tres patrones conocidos lo explican:

  1. Empleados mega-millonarios: Las rondas de inversión gigantes en OpenAI y otras firmas de AI generaron liquidez inédita. Ejemplo: empleados de OpenAI acaban de vender acciones por USD 9.000 millones en la última ronda. Esa riqueza personal les permite retirarse jóvenes o crear fondos con su propio capital.
  2. Acceso privilegiado a dealflow técnico: Los tentáculos de la OpenAI Mafia llegan a startups fundadas por ex-compañeros que conocen dónde están las oportunidades reales. Esto no es nuevo: yo mismo invertí en el vehículo que creamos entre empleados de Microsoft para apostar en startups de ex-Microsoft que apalancan tecnología cloud. La diferencia es que aquí se trata del sector más caliente del mercado: AI.
  3. Conocimiento técnico + estrategia = confianza de LPs: La combinación de ser insiders técnicos y haber vivido el hypergrowth desde adentro, les da credibilidad para armar tesis de inversión sólidas. En un mercado con USD 175.000 millones de dry powder listos para ser invertidos, no sorprende que Limited Partners quieran entrar en estos fondos temáticos de AI.

En otras palabras, la OpenAI Mafia no sólo crea startups: ahora también controla parte del capital que financiará la próxima generación de AI... si no entienden ahora porque es un mercado laboral 996 se estan perdiendo algo.

Nota: los 3 patrones que digo se repiten son a nivel conceptual super simples; concentracion de talento vertical, creacion de riqueza y liquidez en el mercado y, finalmente, una nueva ola-macro de nueva tecnologia

| Mercados
Tags:
inversiones openai startups

No, Google no está muerto y la distribución sigue escribiendo la historia

En los últimos dos años, gran parte de la conversación sobre IA se ha centrado en el ascenso de ChatGPT y en los supuestos errores de Google. La narrativa dominante, en la que incluso entré a veces, pinta a ChatGPT como el first mover que tomó la delantera mientras Google dudaba y perdía terreno por la tibieza de Sundar Pichai cuando lo comparabas con la decisión de Satya Nadella y otros. Y, sobre el papel, esa historia es tentadora, pero.

Es innegable que ChatGPT logró una tracción impresionante. Lanzado en noviembre de 2022, alcanzó los 100 millones de usuarios en apenas dos meses — la curva de adopción más rápida en la historia del consumo digital. Desde entonces, OpenAI ha mantenido un ritmo de lanzamientos vertiginoso: GPT-4, GPT-4 Turbo, GPT-5, capacidades multimodales, voz, memoria, agentes, versiones enterprisa… todo en menos de tres años. Todo esto respaldado por un músculo financiero sin precedentes: más de 13.000 millones de dólares de Microsoft y unos 4.000 millones comprometidos por Softbank. El resultado: alrededor de 700 millones de usuarios activos semanales a mediados de 2025 y una posición cultural en la que, para mucha gente, “IA” es sinónimo de “ChatGPT”.

Leer completa
| Estrategias Google Inteligencia Artifical
Tags:
AI innovación openai startups

Microsoft Copilot y Google AI: una carrera al abismo

Hace 2 días Microsoft y Google decidieron incluir gratuitamente sus versiones de AI en sus aplicaciones de productividad, léase Microsft 365 y Google Wokspace, mientras aumentaron el precio base en menos del 10%... esta es, literalmente, una carrera hacia el abismo donde cada uno busca entrar al mercado de otro solo con precio.

  • Google: "A customer using the Workspace Business Standard plan with a Gemini Business add-on previously paid $32 per user, per month. Now, that same customer will pay just $14 per user, per month — only $2 more than they were paying for Workspace without Gemini."
  • Microsoft: "bringing Microsoft Copilot and Microsoft Designer to Microsoft 365 Personal and Family subscribers in most markets worldwide" ... "the prices of Microsoft 365 Personal and Family in the US for the first time since its release by $3 USD per month"

La primer lectura es que; sacaron del juego a cualquier otro jugador del mercado de "software de productividad" que quiera agregar funciones de AI porque los únicos con la espalda financiera para atender un par de centenas de millones de usuarios son Microsoft, Google, Amazon y Meta... y estos últimos dos no cuentan aca.

Leer completa
| Inteligencia Artifical
Tags:
AI competencia Google Microsoft openai

OpenAI Mafia

Si de Paypal salieron varios emprendedores que se convirtieron en estrellas en Internet (desde Elon Musk hasta Roelof Bohta o Dave Mclure, Peter Thiel y tantos otros) creo que de OpenAI están saliendo tantos empleados que fundan empresas que están dominando nichos que recien arrancan en este landgrab que va a dejar atrás a los de Paypal.

Solo estas 15 empresas fundadas por ex empleados de OpenAI ya levantaron casi 15.000 millones de dólares de fondos de inversión y estan tomando verticales tan específicos que con sus backgrounds de research y el capital que reciben... van a sacudir a algunos de los grandes que conocemos hoy.

Name of StartupName of FounderPosition at OpenAI
Safe Superintelligence (SSI)Ilya SutskeverCo-founder and Chief Scientist
AnthropicDario AmodeiSenior Research Scientist
Perplexity AIAravind SrinivasFormer Researcher and Intern
AdeptDavid LuanFormer Researcher
CovariantPieter AbbeelFormer Researcher
GantryJosh Tobin, Vicki CheungResearch Scientist, Head of Infrastructure
Eureka LabsAndrej KarpathyFormer Research Scientist
Unnamed AI StartupMira MuratiFormer CTO
Unnamed AI StartupBarret ZophFormer VP of Research
Prosper RoboticsShariq HashmeMember of Technical Staff
QuantasticaPetar KorponaićData Preparation Engineer
Forecasting Research InstituteMichael PagePolicy and Ethics Adviser
AidenceTim SalimansResearch Scientist and Team Lead
CrestaTim ShiMember of Technical Staff
PilotJeff ArnoldHead of Operations
DustStanislas PoluResearch Engineer

| Inteligencia Artifical
Tags:
Dario Amodei Ilya Sutskever mafia openai

ChatGPT y el contexto

En 1973, Arthur C. Clarke escribió “Perfiles del Futuro: Una Investigación sobre los Límites de lo Posible", donde formuló sus famosas “Tres Leyes”, siendo la tercera la más citada: “Cualquier tecnología suficientemente avanzada es indistinguible de la magia.” Esta frase hoy me persigue, especialmente con el auge de los Modelos de Lenguaje Grande (LLMs) o el uso de ChatGPT. Estos modelos pueden generar resultados que se sienten mágicos, pero no entender el papel que juega el contexto es no entender su esencia misma.

El contexto no es solo una característica; es la base que permite a estos modelos realizar su “magia”.

El contexto en los LLMs se refiere a los diversos tipos de información que el modelo procesa para generar una respuesta relevante y eso incluye al menos 3 divisiones:

  • La consulta: esto es el texto o consulta que el usuario quiere entender y sirve como el prompt principal para la respuesta del modelo.
  • Instrucciones del usuario: cualquier directiva específica o guía dada por el usuario, como pedir un resumen, una explicación detallada o un cambio en el tono. Esto incluye que le digas cual es el perfil al que debe apuntar (eg: "soy un arquitecto de 35 años, con 8 de experiencia en diseño de aeropuertos") y que puedes incluir siempre en la consulta.
  • Conocimiento amplio: la información con la que el modelo ha sido entrenado, incluidos libros, artículos y otras fuentes de datos, que le permite entender el lenguaje, los conceptos y los contextos más allá de la entrada inmediata.

Cuando el LLM genera respuestas, está sintetizando estos elementos, por eso las respuestas generadas suenan coherentes y, sobre todo, relevantes para las expectativas del usuario. Sin aprovechar este contexto, el modelo perdería su capacidad de proporcionar respuestas significativas para tus expectativas o, luego de refinar el "context window", que sean realmente precisas.

“Now you’re looking for the secret, but you won’t find it, because of course you’re not really looking. You don’t really want to know. You want to be fooled.”
― Christopher Priest, The Prestige (citado antes)

Personalizar los LLMs para aprovechar al máximo la entrada inmediata y las instrucciones del usuario es clave para garantizar respuestas relevantes y efectivas. (Nota: obviamente no hablo de personalizar el modelo porque no está a tu alcance). Por ejemplo:

  • Optimizar la entrada inmediata: puedes ser preciso en la forma en que formulas tus consultas para obtener las respuestas más precisas y enfocadas. En lugar de hacer preguntas vagas, como “¿Qué es la IA?”, intenta algo más específico para que la respuesta salga adaptada a un perfil como el tuyo:
    • “Explica los beneficios clave de la IA en la salud en términos simples, soy un paciente de 53 años que conoce poco de tecnología.
  • Personalizar las instrucciones del usuario: puedes guiar al modelo para que produzca contenido que se ajuste a tus preferencias y las opciones son ilimitadas. Por ejemplo, podrías pedir que se adapte a un formato: “Resume este artículo en 3 puntos”. O a tu conocimiento: “Dame una explicación detallada con términos técnicos”. O a tu necesidad de mimos al ego:
    • "De todas nuestras interacciones, ¿cuál es una cosa que puedes decirme sobre mí que tal vez no sepa sobre mí?"

Cuanto más refines y personalices tus entradas, mejor podrá el modelo responder a tus necesidades específicas.

Además de mejorar las interacciones con preguntas más precisas, podés personalizar ChatGPT/Claude o MetaAI para que se adapte aún más a tus necesidades.

Por ejemplo, ChatGPT puede recordar detalles de tus conversaciones previas, lo que le permite ofrecer respuestas más relevantes y personalizadas a largo plazo. Podés preguntarle directamente qué recuerda de ti para que borres lo que no te interese o agregues datos o pedirle que te ayude a ajustar la forma en que responde a tus solicitudes.

Por ejemplo, una simple pregunta como “¿Qué sabes sobre mí?” te mostrará la información que ChatGPT ha guardado de tus interacciones previas, brindándote una mayor comprensión de cómo utiliza el contexto para personalizar su asistencia y quizás tengo la ventaja de haber heche una carrera humanistica donde se entiende que:

La importancia del contexto en comunicación es que organiza y da sentido al mensaje. El significado de un mensaje no depende solo de su estructura gramatical, sintáctica o léxica sino también del contexto que acompaña a un enunciado y afecta a su interpretación.

Que lindo futuro nos espera con prompt engineering.

| Inteligencia Artifical
Tags:
AI chatgpt innovación llm openai

Elon Musk vs OpenAI

Hace unos días Elon Musk demandó a OpenAI para que rompan sus alianzas comerciales. Hoy OpenAI respondió con datos mostrando que Elon Musk los demanda porque "logramos avanzar en la misión de OpenAI sin su ayuda". Honestamente no iba a hablar de la demanda de Musk porque es la continuación de su lobby personal por destruirla.

No sólo la "demanda" no tiene sentido porque no había un contrato sino que es un diatriba sobre cómo se aprovecharon de él, pero esto es simplemente una pelea de egos porque Musk no acepta que no se la regalaron.

Leer completa
| Inteligencia Artifical
Tags:
AI elon musk emprendedores inteligencia artificial openai sam altman

Open AI Sora crear videos con Inteligencia Artificial y prompts

Prompt: Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee.

Este video fue creado por Open AI usando Sora, su último modelo, que puede crear videos usando prompts de texto pero, también, crear videos usando videos como base para crear variaciones en estilo, cinematografía y cualquier otra variable que puedas elegir o crear simplemente describiendo el cambio que querés.

We explore large-scale training of generative models on video data. Specifically, we train text-conditional diffusion models jointly on videos and images of variable durations, resolutions and aspect ratios. We leverage a transformer architecture that operates on spacetime patches of video and image latent codes. Our largest model, Sora, is capable of generating a minute of high fidelity video. Our results suggest that scaling video generation models is a promising path towards building general purpose simulators of the physical world.

Research: Video generation models as world simulators
Leer completa
| Inteligencia Artifical
Tags:
AI openai SORA Superinteligencias video

OpenAI y las oportunidades inevitables

Esta semana el uso de inteligencia artificial en el cine es parte del reclamo en la huelga de los escritores, también el uso de inteligencia artificial en la creación de las animaciones en Secret Invasion desató quejas y amenazas de más huelgas…

Esta misma semana Carlos Banon, un arquitecto multi-premiado, decidió crear un curso para “expandir conceptos arquitectónicos con comandos de Midjourney y desarrollar skills de control de geometría, materiales y creación de atmósferas usando stable Difussion y ControlNet

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of light, it was the season of darkness, it was the spring of hope, it was the winter of despair.

Charles Dickens, A Tale of Two Cities

Esta misma semana salió un estudio donde se muestra que el 92% de los developers de software usan Copilot y “Over 80% of developers believe that AI-powered coding tools can enhance team collaboration, improve code quality, speed project completion and improve incident resolution

Mientras una industria abraza una tecnología como un copiloto que la ayuda a mejorar sus capacidades creativas (evitando lo repetitivo) y otra industria trata de buscar el espacio donde se puede mejorar (la idea de crear atmósferas en arquitectura usando motores OSS!) hay otras que tratan de frenar el uso de la tecnología y frenar a los que la están usando.

El cambio es inevitable… pero estas herramientas son un copiloto y amplían tu capacidad creativa y de protototipadp liberando espacio repetitivo y solitario.

| Inteligencia Artifical Rants
Tags:
Estrategias IA openai

La carta abierta con la inteligencia artificial

Ayer se conoció una carta abierta con mas de mil firmas pidiendo que se abra un período de "freno" al desarrollo y entrenamiento de modelos de inteligencia artificial (LLM) superiores a GPT-4 por seis meses porque "no se entienden los alcances de esta tecnología". Los medios corrieron a publicarlo en medio de advertencias sobre el poder de la Inteligencia Artificial General; en Linkedin varios gurús hablaron de un apocalipsis mientras otros pedimos calma.

Hoy se descubrió que la carta estaba financiada por Elon Musk, que en las "mil firmas de científicos e investigadores" había muchas falsificadas y que otros tampoco estaban de acuerdo con el texto final.

Primero lo importante: ¿tiene sentido pedir que se frene el avance de los LLM?

Realmente no tiene sentido, arrancando por el hecho de que un modelo de linguistico grande (LLM) está muy lejos de ser una inteligencia artificial general capaz de sustituir y dominar a los humanos; de hecho incluso los firmantes de esa carta lo reconocen con lo que de movida no tiene sentido el pedido.

Segundo, ¿están pidiendo que "el Estado establezca una moratoria de seis meses"? ¿Qué aplicabilidad real tiene el pedido de algo a escala mundial cuando ni siquiera se pueden regular conceptos básicos como la exportación de tecnología a "estados rebeldes"?

Pero más allá de eso los "threat actors" que descubrieron en esto una nueva herramienta para sus intereses ¿van a frenar porque lo piden académicos? Si era así de simple, deberían pedir que se dejen de cometer crímenes :)

¿Porque Elon financió esta carta?

En 2016 cuando se funda Open AI, Elon Musk estaba en el grupo fundador y se comprometió a poner 1.000 millones, pero en 2018 se imaginó que el podía hacer mejor trabajo que el equipo liderado por Sam Altam entonces quiso tomar control de la iniciativa.

Le dijeron que no (porque no podia manejar Tesla, Space X y encima OpenAI) y se enojó y retiró la plata que se había comprometido a poner en el proyecto. Hoy, casi 5 años después, se arrepiente y decide crear un nuevo startup que compita con OpenAI pero necesita tiempo para alcanzarlos. [Link a Semafor]

Y esta usando Twitter para avanzar su agenda; ahí reside el valor de la apuesta que hizo por la red social.

Pero mas allá de todo, este incidente es clave para entender que estamos en un momento de cambio y que hay muchos intereses tratando de frenar el avance de una herramienta que ya está activa y evolucionando.

| Inteligencia Artifical
Tags:
IA openai

El incentivo de innovar y el costo de no hacerlo

Fue Steve Jobs el que dijo "If you don't cannibalize yourself, someone else will." y creo que por eso la acción de Google cayó un 9% en un solo dia cuando apuró un evento de AI y no porque "hubo un error en una demo".

Lo que el análisis de 280 caracteres resume en "Google perdió un 9% porque una demo salió mal" es no entender el porque Google no habia presentado hasta ahora una interfaz conversacional como ChatGPT para aumentar los resultados: esto cambia la dinamica de negocio y no hay incentivos para innovar si canibalizas tus ingresos mientras cambia tu estructura de costos

  • La estructura de costos de una interfaz conversacional sobre inteligencia artificial es diferente a la del modelo actual de los buscadores (aka: 10 blue links).
  • El modelo de ingresos cambia radicalmente versus la actual integracion de links de anuncios arriba y abajo de los resultados en varios sentidos:
    • La interfaz es diferente entonces el espacio "above the fold" cambia; la integracion/mezcla de SERP/SEO cambia
    • pero mas estratégico es que el usuario ahora espera algo mas que "un link con la informacion" y nadie hizo pruebas a escala de esos nuevos modelos.

Pero entonces ¿con tantas preguntas porque el mercado le pego a Google este golpe que borró $100b en una hora? porque esperaban que se presente algo parecido al nuevo Bing que presentó Microsoft y Google no lo hizo... repito: no lo hizo porque pese a tener talento y tecnologia no tenia incentivos para probar algo que pudiera canibalizar su modelo de negocios por eso hay otro jugador, Microsoft, probando cosas nuevas.

¿Porque hablo de Microsoft si empece hablando de la caida de 9% en un dia de $GOOG o citando a Steve Jobs? porque la realidad es que en algun momento todos los negocios necesitan cambiar... y los mejores ejemplos son los dos "abuelos" del mercado de las Big Tech: Apple y Microsoft tienen 47 años y ya sufrieron reinvenciones.

Apple presento el iPhone en 2007 sabiendo que iban a volver obsoleto al iPod aun cuando era el motor de su crecimiento; Microsoft se enfoco en la nube aun cuando era su core eran los servers... "If you don't cannibalize yourself, someone else will."

Enter Satya y su experiencia en canibalizarse antes que lo canibalice otro, que explica MUY bien en su entrevista con The Verge sobre "The New Bing":

Like all things, one of the things that I think about is, in platform shifts, two things have to happen. You have to retool pretty much every product of yours, so you’ve got to rethink it, whether that’s the way you build it or what its core features are. It’s like how Microsoft had to pivot for the cloud to rethink exchange. It was not an exchange server. It was exchange as a service or what we had to do with our server infrastructure. We had to rebuild, essentially, a new core stack in Azure. So every time, with transitions, you have to essentially rewrite it. That’s how I think about it. The second thing is you also have to think about the business model. Sometimes these transitions are pretty harsh. I’ll tell you, the last transition from having the high share server business with great gross margins to saying, “Hey, the new business is called cloud, and it’s going to have one-fourth the margins” as the new news was pretty harsh, but we made it.

Satya Nadella explicando las dos caras de un cambio de paradigma.

Pero ¿hace bien el mercado en apostar contra Google? honestamente no lo creo... Google tiene el talento, tiene el market share y sobre todo tiene a Chrome y Android para apalancar todo; ojala hoy tengan algo de miedo y dejen de alocar experimentos interesantes como Google Duplex a una parte de Assistant.

| Estrategias Inteligencia Artifical
Tags:
Bard chatgpt Google innovación inversiones Microsoft openai

OpenAI, ChatGPT y la era hibrida de copilotos.

El experimento del Juez Juan Manuel Padilla Garcia, de Colombia, es de los mas interesantes que he visto con OpenAI en el mundo real, cuando el Juzgado 1º Laboral del Circuito de Cartagena, usó ChatGPT para dictar sentencia y lo fundamentó en el documento... usandolo como copiloto.

"...extender los argumentos de la decisión adoptada, conforme al uso de inteligencia artificial (IA). Por consiguiente, se procedió a incluir apartes del problema jurídico planteado en la presente sentencia y se ingresó en el aplicativo https://chat.openai.com/chat" ... "El propósito de incluir estos textos producto de la IA no es en manera alguna reemplazar la decisión del Juez. Lo que realmente buscamos es optimizar los tiempos empleados en redacción de sentencias, previa corroboración de la información suministrada por IA"

Fundamentos: Juez Juan Manuel Padilla Garcia, P5 y 7

En el link está el documento completo del juez pero la base es simple de entender; estos modelos (LLM y Transformers) son herramientas que necesitan corroboración de un humano para darle sentido a su respuesta.

inteligencia artificial Maschinenmensch

La base de todo es simple: la respuesta que uno ve en ChatGPT o cualquier otro modelo, se genera por un modelo estadístico que decide que palabra (o símbolo) va luego de otra, sin entrar en valoración del sentido de lo que esta entregando.

Eso es lo que genera mucha confusión alrededor de estos transformers: Sus respuestas hacen sentido, son rápidas y son asertivas pero no están orientadas a certeza sino a modelos estadísticos.

Por eso me gusta el concepto de "copilotos" como una herramienta que ayudan al piloto con datos y background que uno puede tomar para mejorar el producto final... el segundo punto que hay que entender que pocas veces esto es un one-off; hay valor en refinar prompts, en follow ups, en buscar hacks y así dandole verdadero valor al concepto conversacional.

Por eso Stack Overflow se prohibe copiar respuestas de ChatGPT sin verificacion y errores en sus respuestas matemáticas y por eso hay gente horrorizada de verlos sin entender las limitaciones que estos modelos tienen y no terminan de entender que estamos en una era hibrida de IA

Explainability and comprehensibility of AI are important requirements for intelligent systems deployed in real-world domains. Users want and frequently need to understand how decisions impacting them are made. Similarly it is important to understand how an intelligent system functions for safety and security reasons. In this paper, we describe two complementary impossibility results (Unexplainability and Incomprehensibility), essentially showing that advanced AIs would not be able to accurately explain some of their decisions and for the decisions they could explain people would not understand some of those explanations.

Roman V. Yampolskiy - Unexplainability and Incomprehensibility of AI
| Rants
Tags:
chatgpt innovación llm openai